III, $H_3BNHCH_3BH_2NHCH_3BH_2NH_2CH_3$, the only postulated intermediate which was not isolated. It is apparently unstable with respect to the trimer under the conditions of the pyrolysis. Some experimental evidence which might be consistent with the presence of III is the formation of $H_3BNH_2CH_3$ from the reaction of $[H_2CH_3NBH_2NHCH_3BH_2NH_2CH_3]+Cl^-$ with Na-BH₄ in a dilute monoglyme solution. Compound III should be soluble in monoglyme and could dissociate¹³ to form, under dilute conditions, $H_3BNH_2CH_3$ and $(H_2BNHCH_3)_x$ polymer, the observed products. However, under very concentrated conditions, monoglyme solution or pyrolysis of II, the six-membered ring is formed by an intramolecular dehydrogenation reaction (eq 4) and disproportionation is averted.

In contrast to the ionic and polymeric type of intermediates, which characterized the formation of (H₂- $BNHCH_3$)₃, the mechanism for the pyrolysis of H_3BN - $(CH_3)_2H$ probably involves only neutral species. There was no experimental evidence for the cation H₂B- $(N(CH_3)_2H)_2$ + during the pyrolysis of $H_3BN(CH_3)_2H$ or the reaction of NaBH₄ and (CH₃)₂NH₂Cl in etherated solvents. Similarly, the cation $[H(CH_3)_2NBH_2N (CH_3)_2BH_2N(CH_3)_2H$]+ could not be prepared. Even though no intermediates could be isolated during the partial pyrolysis of H₃BN(CH₃)₂H, the experimental evidence is consistent with neutral monomeric species, $H_2BN(CH_3)_2$, which associate to give the dimer. The dimer is also in equilibrium with the proposed monomeric species. The association of monomers¹⁴ was originally suggested to account for the formation of all aminoboranes.

(14) E. Wiberg, A. Bolz, and P. Buckheit, Z. Anorg. Chem., 256, 285 (1948).

The most likely route to the monomer $H_2BN(CH_3)_2$ is an intramolecular dehydrogenation of $H_3BN(CH_3)_2H$. Another possible route might be related to the initial formation of $H_3BN(CH_3)_2BH_2N(CH_3)_2H$ by the intermolecular dehydrogenation of two $H_3BN(CH_3)_2H$ molecules followed by either dissociation to give H₃BN- $(CH_3)_2H$ and the monomer $H_2BN(CH_3)_2$ or an intramolecular ring-closure reaction by dehydrogenation. However, the observation that 2 moles of H_2 is formed for every mole of $(H_2BN(CH_3)_2)_2$ in the quenching experiment suggests that $H_3BN(CH_3)_2BH_2N(CH_3)_2H$ either is not a primary intermediate or is too unstable for a measurable quantity to be present under the pyrolytic conditions. It should be noted that the dimer has been prepared from H₃BN(CH₃)₂BH₂N-(CH₃)₂H, but pyrolytic conditions¹⁵ of 200° were used.

In conclusion, the most significant factor for the determination of the degree of association of aminoboranes appears to be the intermediates in their formation. All aminoboranes cannot be considered to be formed by the association of monomeric species. Therefore, steric effects should not be used as the only factor to explain the change in the degree of association with the substituents on the boron and nitrogen atoms. The differences in the intermediates might be related to steric effects, but the basicity of the amine and the strengths of the N–H bonds should also be considered.

Acknowledgment.—The author wishes to thank Professor A. W. Laubengayer for his cooperation in making his research facilities available.

(15) G. A. Hahn and R. Schaeffer, J. Am. Chem. Soc., 86, 1503 (1964).

Contribution from the Department of Chemistry Harvard University, Cambridge, Massachusetts 02138

Molecular and Crystal Structure of $m-B_{10}Br_2H_8C_2H_2$

BY HERBERT BEALL AND WILLIAM N. LIPSCOMB

Received December 28, 1966

The product of dibromination of m-B₁₀H₁₀C₂H₂ in the presence of AlBr₃ is shown to be a derivative with Br atoms substituted on B atoms 9 and 10, those farthest from the C atoms and the most negative B atoms in nonempirical molecular orbital studies of m-B₁₀H₁₀C₂H₂. There are four molecules in a unit cell having parameters a = 13.14, b = 7.08, and c = 12.64 A. The space group is Pnam. A tentative assignment of the ¹¹B nuclear magnetic resonance spectrum is proposed.

The charge distribution¹ in $o-B_{10}C_2H_{12}$, as computed by molecular orbital theory, gives a reasonable account of some simple electrophilic free radical and electrophilic reactions which occur at various B atoms. Thus the icosahedral $B_{10}C_2$ framework is strongly polarized by the C atoms to give ground-state charges of -0.16at B(8) and B(10), of -0.16 at B(9) and B(12), of -0.03 at B(4), B(5), B(7), and B(11), and of +0.08(1) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., **36**, 3489 (1962). at B(3) and B(6). Hitherto unpublished studies by less empirical procedures,² in which parameters were taken from $B_4H_{4^3}$ for B atoms and in which one- and twocenter zero overlap matrix elements have been included, yield -0.29, -0.27, -0.02, and +0.22, in the order listed above. Where the charges are similar, for B(8)

 (2) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2353 (1966).

(3) W. E. Palke and W. N. Lipscomb, J. Chem. Phys., 45, 3945 (1966).

and B(9), those electrons on B(9) appear to be more polarizable than those on B(8). Friedel–Crafts bromination, ⁴⁻⁶ photochemical chlorination,⁷ and withdrawal of B by ethoxide ion^{8,9} are all in agreement with the hypothesis that these ground-state charges are preserved to a large extent in the transition states and that the usual qualifications⁶ apply to these reactions.

In the expectation that these results may be more general, we have proposed a simple inductive rule¹⁰ which indicates clearly that simple electrophilic attack should take place at B(9) and B(10) in m-B₁₀-C₂H₁₂. We show here from the results of a three-dimensional X-ray diffraction study that this is indeed so in m-B₁₀Br₂H₈C₂H₂, which had been prepared¹¹ by a Friedel–Crafts reaction. Thus the early predictions¹ of molecular orbital theory are supported. On the basis of this theory, and isomer counts for unsubstituted, C-methyl, and C,C'-dimethyl m-B₁₀C₂H₁₂, Zakharkin and Kalinin¹² have also concluded that B(9) and B(10) are the first to be attacked by electrophilic reagents.

These results also make possible a tentative experimental assignment of the ¹¹B nuclear magnetic resonance spectrum, as described below. We now turn to the crystal structure determination.

Structure Determination

Single crystals, about $0.5 \times 0.04 \times 0.04$ mm, were mounted along the long dimension onto fine capillaries for photographic collection of X-ray data. Reciprocal lattice symmetry of mmm and unit cell dimensions (calibrated by Al powder diffraction lines) of a = $13.14 \pm 0.01, b = 7.08 \pm 0.03, \text{ and } c = 12.64 \pm 0.04 \text{ A}$ were established. Extinctions of 0kl when k + l is odd and h0l when h is odd left the space group ambiguous, either as Pna21 or Pnam. Later work showed that Pnam is most probably correct. Weissenberg levels hKl for $0 \leq K \leq 5$ were taken with Cu K α radiation, and precession levels 0 and 1 about the [100], [101], and [001] axes were taken with Mo K α radiation. After the usual Lorentz-polarization corrections, these data were correlated to a single scale, and the Patterson function¹³ was then computed from sharpened coefficients. The clear Br ··· Br interaction indicated the space group Pnam for these heavy atoms, and yielded $R_F = \Sigma ||F_o| - |F_e||/\Sigma |F_o| = 0.33$ for Br contributions only. Phases computed from Br

(4) L. I. Zakharkin and U. N. Kalinin, Izv. Akad. Nauk SSSR, Old. Khim. Nauk, 7, 1311 (1965).

(6) J. A. Potenza and W. N. Lipscomb, Inorg. Chem., 5, 1471, 1478, 1483 (1966).

(7) J. A. Potenza and W. N. Lipscomb, *ibid.*, **3**, 1673 (1964). In photochemical chlorination, which is probably free-radical attack, the charge distributions in both occupied and unoccupied states are relevant, but we find that most of the charge variation among B atoms is in the occupied states.

(8) M. F. Hawthorne and R. L. Pilling, J. Am. Chem. Soc., 87, 3987 (1965).
(9) A. Zalkin, D. H. Templeton, and T. E. Hopkins, *ibid.*, 87, 3988 (1965).
(10) F. P. Boer, J. A. Potenza, and W. N. Lipscomb, Inorg. Chem., 5, 1301

(1966).
(11) H. D. Smith, T. A. Knowles, and H. Schroeder, *ibid.*, 4, 107 (1965).

(12) L. I. Zakharkin and U. N. Kalinin, Dokl. Akad. Nauk SSSR, 169, 590 (1966).

(13) A. L. Patterson, Z. Krist., 90, 517 (1935). We wish to dedicate this present paper to the memory of Dr. A. Lindo Patterson.

then yielded 31 peaks greater than about one-third the height expected for B, from which an icosahedral arrangement was easily located, bisected by the crystal-lographic mirror plane and chemically reasonably located relative to the Br atoms. Inclusion of these atoms as boron, four on the mirror plane and four off this plane, yielded $R_F = 0.25$ after two cycles of position and anisotropic thermal parameters.

Meanwhile, back at the laboratory, levels hKl including $0 \leq K \leq 4$ were taken from a crystal, $0.5 \times 0.04 \times 10^{-5}$ 0.04 mm, on the Buerger automated diffractometer with the use of Cu K α radiation and a Xe proportional counter. Also diffractometer data hkL for $0 \leq L \leq 3$ were taken from a cube, about 0.04 mm on edge, which had been cut from a needlelike crystal. After Lorentz and polarization corrections these nine levels were correlated and merged with the photographic data (Table I). A value of $R_F = 0.113$ was then achieved after (a) two cycles of least-squares refinement of position and anisotropic temperature parameters of Br, (b) two cycles of least-squares refinement of position and isotropic temperature parameters of cage atoms, and (c) three cycles of least-squares refinement of position and anisotropic temperature parameters for all atoms (except H) and the scale factor.

Until this point in the refinement, all cage atoms were assumed to be boron atoms. The smaller radius found⁶ for C in $o-B_{10}Br_2H_8C_2H_2$ proved to be the most reliable basis for location of C atoms in the framework. Hence, the meta and para distances of cage atoms were computed (Table II), from which we note that the 1-7 meta distance (Figure 1) is shorter than any other meta distance by four standard deviations. Thus atoms 1 and 7 are assigned as C atoms. This conclusion is also supported by the *para* distances, for which 1-12 and 7-5are shorter than 2-9 and 4-11. Introduction of a scattering curve for C for atoms 1 and 7, followed by two cycles of least-squares refinement of position and anisotropic temperature parameters of Br, B, and C atoms, yielded $R_F = 0.103$. The H atoms were not found uniquely in a difference electron density map, but they were introduced at expected terminal positions. A final cycle of refinement of position and anisotropic temperature parameters of Br, B, and C then yielded $R_F = 0.105$ for the 685 observed reflections. Values of $R_{F^2} = \Sigma |F_0^2 - F_0^2| / \Sigma F_0^2 = 0.142$ and $R_{wF^2} =$ $[\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2} = 0.085$ were also obtained. No unusual problems of pseudo-symmetry are suggested by the values of R_F for different classes of reflections (Table III).

Results and Discussion

In the numbering scheme (Figure 1) the C atoms are at positions 1 and 7, as compared with 1 and 2 in o-B₁₀C₂H₁₂. The crystal structure (Figure 2) diagram includes an indication of the crystallographic mirror plane which passes through the m-B₁₀Br₂H₈C₂H₂ molecule. Atomic parameters (Table IV) include standard deviations computed from the full-matrix leastsquares refinements. No corrections of bond dis-

⁽⁵⁾ J. A. Potenza, W. N. Lipscomb, G. D. Vickers, and H. Schroeder, J. Am. Chem. Soc., 88, 628 (1966).

								List	OF (Deser	VED	F_{hk}	VAL	UES											
2461350241370243024135013024135013021302123345578123451237123471234123412312312341231231234123123123412333332344443555556667777788889999900000000000000000000000	69608681337128521998210276133931807112043041108186891373341932668139962882683204418223687687640300188302665 13182021021025556133931807112043041108186891373341932668113999628820842188268387687640300188302665 1131131188302665	. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1440000001111111223222223333334444444455566666777777888889999990000011111122333333344440000000001111111244681234	8 15 14 17 5 6 16 16 16 15 16 15 16 16 15 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	\$	3444444555666677777888889999900001111112222313334000001111111122222333334444455556666677777788888999999000011111111122222333334444455556666677777788888999999000011111111122222333334444455555666667777778888899999900001111111111111111111	20258170205771898699907489308030767007499997450950991171797740667858022033242121642389098442244387236304 12222112057718986999074893080307670074999974509950991171797740667858022033242121642389098442244387236304 121212630913422121264231242221167007499974509991171797740667858022033242121642389098442244387236304	444444444444445555555555555555555555555	4034014012312234712361247123467123412423412342312342341323412361345670123460145012345601340123012	0 0 1 2 2 2 3 3 3 3 1 2 2 2 2 3 3 3 3 1 2 2 2 2		491234012340124012340123401234012340123401	67777788888899999000001111111111122222225333333344444556666777778888999900000000000000001111111111222222533333344444556666777778888999900000000000000000000000	9717 8735 35970111 89664224761131378560218753906964183156384411856668447251875297011189664224761131377573069641831563894418315562844118522866611031228666110312286661113037566666410312286661125	R 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	670234012501234014014012341230124123401240123412346234136124513412312342412342412342412341341323012456013510124	1112222333334444445555666666777888889999900001111111100000011122233333444555566666778888899990001110000000111123333	109691921921921921921921921921921921921919219192192	10000000000000000000000000000000000000	50134340123401403401401231234523513512341234123123434341312150131024012324123023123414123414123412421110	134444556666677778889999000011112000011122233334444666677777889900001112333444455666677779000022333344467801	$\begin{array}{c} 15\\ 43\\ 5\\ 22\\ 7\\ 5\\ 7\\ 20\\ 8\\ 8\\ 8\\ 21\\ 7\\ 5\\ 6\\ 4\\ 1\\ 3\\ 1\\ 1\\ 1\\ 7\\ 7\\ 9\\ 6\\ 9\\ 7\\ 21\\ 7\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	14414444415515	1 2 3 3 4 5 6 0 2 3	5 18 17 6 11 4 9 6 6 7

TABLE I

The sea TTT

Tabi	LE II
meta and para DISTANCES IN	12 B REFINED STRUCTURE
Atoms	Distance, A
meta Over-al	$1 \sigma = 0.035$
1-7	2.56
1-8	2.79
1-9	2.86
3-5	2.86
3-6	2.89
3-9	2.83
3-11	2.89
3-12	2.85
4-6	3.00
4-7	2.76
4-10	3.01
4-12	2.94
5-8	2.90
5-12	2.81
7-9	2.73
8-10	2.89
8-11	2.93
para Over-al	$1 \sigma = 0.061$
1-12	3.26
5-7	3.21
2-9	3,35
4-11	3.49

^a Over-all standard deviations obtained by averaging equivalent

distances and applying the formula $\sigma = [\sum_{i=1}^{n} (x_i - \bar{x})^2 / (N - \bar{x})^2]$

$1)]^{1/2}$.

Figure 1.—The molecular structure and numbering scheme for $m - B_{10}Br_2H_8C_2H_2$. Atoms are designated as follows: H (1', 2', 3', 4', 5', 6', 7', 8', 11', 12'); C (1, 7); B (2, 3, 4, 5, 6, 8, 9, 10, 11, 12); Br (9', 10').

tances (Table V) have been made for thermal motion, because the large standard deviations did not make a rigid body refinement seem worth the effort. In Table VI the bond distances are given on the assumption that the molecule has C_{2v} symmetry. Final *meta* distances are in Table VII.

The *m*-carborane framework has the C atoms nonadjacent, in disagreement with the adjacent-carbon model.¹⁴ An electron diffraction study¹⁵ of m-B₁₀-

IABLE III						
Final Values of	R_F for $685~\mathrm{R}$	EFLECTIONS				
hkl		R_F				
All $(h, k, l \neq 0)$		0.109				
h even		0.120				
h odd		0.102				
k even		0.109				
k odd		0.110				
l even		0.113				
l odd		0.107				
k + l even		0.119				
k + l odd		0,100				
h + l even		0.104				
h + l odd		0.115				
h + k even		0.124				
h + k odd		0.096				
h + k + l even		0.113				
h + k + l odd		0.106				
Range of sin θ	R_F	No. of reflections				
0.00-0.40	0.087	89				
0.40-0.50	0.068	71				
0.50-0.60	0.080	109				
0.60-0.65	0.097	56				
0.65-0.70	0.140	63 .				
0.70-0.75	0.129	69				
0.75-0.80	0.203	64				
0.80-0.85	0.144	74				
0.850.90	0.203	64				
0.90-1.00	0.212	26				

Figure 2.—The molecular packing as seen in h0l projection. Only those symmetry elements necessary to generate the space group are shown. Hydrogen atoms are omitted where necessary for clarity.

 C_2H_{12} did not yield a unique result but supported a slightly distorted icosahedral model. Our results (Table VI) are in excellent agreement with the average distances B-C = 1.70 ± 0.11 and B-B = 1.75 ± 0.06 A, and consistent with the average B-Cl distance of 1.79 ± 0.05 A found in *m*-B₁₀Cl₁₀C₂H₂.¹⁶ Thus the difference of 0.20 A between B-Br and B-Cl is exactly that observed in our studies^{6,7} of derivatives of *o*-B₁₀C₂H₁₂. Here, as in *o*-B₁₀C₂H₁₂ derivatives, it seems clear that the C atoms share in the electron deficiency

(16) J. A. Potenza and W. N. Lipscomb, Proc. Natl. Acad. Sci. U. S., 56, 1917 (1966).

⁽¹⁴⁾ D. Grafstein and J. Dvorak, Inorg. Chem., 2, 1128 (1963).

⁽¹⁵⁾ R. K. Bohn and M. D. Bohn, Abstracts, 152nd National Meeting of the American Chemical Society, New York, N. Y., Sept 1966.

	1.1.7.7	m r Oarn	.O.Y I AKAA	ing ing i	IN I KACIIO	110 01 6		1110 11100	I III MANULING	T THEFT		0)	
Atom	Ne	э.	x		σχ		У		σy		z		σz
С	1		0.158		0,002		0.694		0.004		0.250		
В	3		0.256		0.002		0.674		0.004		0.325		0.001
В	4		0.143		0.001		0.594		0.003		0.367		0.001
В	5		0.070		0.001		0.511		0.003		0.250		
С	7		0.309		0.001		0.504		0.003		0.250		
В	8		0.252		0.001		0.436		0.003		0.366		0.001
В	9		0.135		0.001		0.346		0.003		0.320		0.001
В	12		0.242		0.001		0.289		0.004		0.250		
Br	9	,	0.5815		0.0001		0.3465		0.0003		0.0987		0.0001
H	1	,	0.130				0.865				0.250		
Н	2	/	0.301				0.790				0.376		
н	4	'	0.107				0.651				0.451		
H	5	,	0.976				0.523				0.250		
H	$\overline{7}$	/	0.396				0.501				0.250		
н	8	/	0.293				0.380				0.448		
н	12	/	0.273				0,123				0.250		
Atom	No.	β_{11}	σeta_{11}	B 22	$\sigma \beta_{22}$	β_{38}	$\sigma \beta_{33}$	β_{12}	$\sigma \beta_{12}$	β_{13}	σeta_{18}	β28	σeta_{23}
С	1	280	26	1189	166	324	35	35	65	177	37	-415	87
В	3	90	17	519	89	46	7	-42	31	-11	9	-48	27
В	4	94	15	413	66	71	11	34	19	40	11	61	21
В	5	65	14	387	86	226	30	18	25	17	35	-271	98
С	7	49	11	1580	134	282	25	-107	36	43	27	-555	68
В	8	48	8	364	80	46	8	49	16	13	7	14	21
в	9	65	7	223	58	21	6	-24	19	5	6	-44	15
В	12	203	21	481	88	204	23	46	27	162	25	64	62
Br	9′	91	1	297	6	60	1	-47	2	-10	1	-27	2

Final Position Parameters in Fractions of Cell Lengths and Thermal Parameters $(\times 10^4)^{a=c}$

TABLE IV

^{*a*} The thermal parameters are in the form $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$. ^{*b*} Standard deviations (σ) were obtained from the full least-squares matrix after the final refinement of all position and temperature parameters. ^{*c*} The H atom positions were not refined and are assigned no σ values. All the H atoms were given isotropic temperature factors $\beta = 3.30$.

	TABLE V		TABLE VI							
	Bond Distances ^{a,b}		AVERAGED DISTANCES ^a							
Bond	Length, A	σ	Type	No. averaged	Length, A	σ				
	Br–Br		Averaged to C_{2v}							
9'-10'	3.82	0.007	13	2	1.64	0.050				
	B-Br		1-4	2	1.68	0.050				
		0.017	1-5	2	1,74	0.022				
9-9'	1,99	0.017	2-3	1	1.89	0.035				
	CP		3-4	2	1.72	0.057				
	С=В		4-5	2	1.83	0.042				
13	1.61	0.027	4-8	1	1.81	0.029				
1-4	1.65	0.026	4-9	2	1 80	0.064				
1-5	1.73	0.032	9-10	1	1.00	0.024				
7-3	1.68	0.034	9-10	-	1.11	0.024				
7-8	1.72	0.017		Averaged 1	Bond Types					
7 - 12	1.76	0.032	В-С	6	1.69	0.056				
	ת ת		B-B	11	1.78	0.070				
	B-B		Br–Br	1	3.82	0.007				
3-2	1.89	0.035	B-Br	1	1 99	0.017				
3-4	1.68	0.031		1 1	1,00	0.01				
3-8	1.76	0.038	" The standard	i deviations w	ere obtained b	y averaging dis-				
4 - 5	1.86	0.024	tances and applying the formula in footnote a of Table II except							
4-8	1.81	0.029	in single cases wh	iere standard de	eviations are fro	om Table IV.				
4-9	1.85	0.029								
5-9	1.69	0.024								

1.800.025tially from the vicinal B atoms. This same B(2)-B(3)1.770.024length is 1.89 ± 0.06 A in m-B₁₀Cl₁₀C₂H₂.¹⁶1.710.020The position of attack in the Friedel–Crafts reactionbeen corrected for thermal motion.is clearly B(9) and B(10) in m-B₁₀C₂H₁₂. The charge

0.023

^a Bond distances have not been corrected for thermal motion. ^b Standard deviations were computed from the full variancecovariance matrix calculated for all positions and temperature factors after the final refinement.

1.76

8-9

8 - 12

9-10 9-12

of bonding in the icosahedral cage. Of particular interest in m-B₁₀Br₂H₈C₂H₂ is the remarkably long B(2)-B(3) bond of 1.89 ± 0.04 A, indicative probably of the

is clearly B(9) and B(10) in m-B₁₀C₂H₁₂. The charge distribution as predicted in the early molecular orbital study is -0.16 for B(9) and B(10), -0.03 for B(5) and B(12), -0.03 for B(4), B(6), B(8), and B(11), and +0.10 for B(2) and B(3). Recent studies, which employ parameters for B from the self-consistent-field wave function³ for B₄H₄, and which also employ two-

tendency of the C atoms to remove electrons preferen-

	TABLE VII	
	FINAL meta DISTANCES ^a	
Atoms	Length, A	σ
1 - 7	2.39	0.031
1-8	2.64	0.032
1-9	2.63	0.036
3-5	2.86	0.033
3-6	2.91	0.029
3-9	2.81	0.035
3-11	2.94	0.030
3 - 12	2.89	0.042
4-6	2.96	0.039
4-7	2.72	0.022
4-10	2.95	0.028
4-12	2.90	0.029
5-8	2,85	0.023
5 - 12	2.75	0.023
7-9	2.69	0.023
8-10	2.88	0.021
8-11	2.93	0.027

^a Standard deviations obtained as in Table IV.

center zero overlap interactions as calibrated by total energy matrix elements² in B₄H₄, yield charges¹⁷ of -0.25 for B(9) and B(10), -0.06 for B(5) and B(12), -0.03 for B(4), B(6), B(8), and B(11), and +0.13 for B(2) and B(3). Thus, the most negative B atoms of the ground state of m-B₁₀C₂H₁₂, namely B(9) and B(10), still survive improvements and elimination of arbitrary parameters in the molecular orbital methods. No doubt these charges are exaggerated by lack of selfconsistency in these methods, but, where striking differences of charges occur, the results may be significant. Caution, however, should be applied when little difference occurs, for example between B(4) and B(5). If the reaction is indeed electrophilic, and if the transition state is influenced by the ground-state charge distribution, these charges given by molecular orbital theory do predict that Br substitution should take place, as observed, at B(9) and B(10).

It is also possible to assign some parts of the ¹¹B nuclear magnetic resonance spectrum. In Figure 3 we compare the ¹¹B nmr spectra of m-B₁₀Br₂H₈C₂H₂, m-B₁₀H₁₀C₂H₂, and m-B₁₀Cl₁₀C₂H₂. The most interesting aspect of these spectra is that the low-field component of the lowest field doublet of m-B₁₀H₁₀C₂H₂ appears to remain present when positions 9 and 10 are brominated. It is then probable that B(9) and B(10) are not the lowest field ¹¹B resonances, but are part of the group assigned to six B atoms in m-B₁₀H₁₀C₂H₂: a downfield

(17) M. D. Newton and W. N. Lipscomb, unpublished results. A slight lack of rotational invariance in these wave functions has required an average at each B atom.

Figure 3.—The ¹¹B nuclear magnetic resonance spectra of m-B₁₀Br₂H₈C₂H₂ (15 Mc), m-B₁₀H₁₀C₂H₂ (19.3 Mc), and m-B₁₀Cl₁₀-C₂H₂ (19.3 Mc). The magnetic field increases from left to right. Tentative groupings of symmetry equivalent ¹¹B resonances are indicated as singlets where B is halogenated and as (highly approximate) doublets for BH.

shift, consistent with that found⁵ in brominated o- $B_{10}H_{10}C_2H_2$, is also indicated by these assignments when H atoms on B(9) and B(10) are substituted by Br atoms. From these definite conclusions we then conjecture that the assignment is B(2), B(3) (35.4 ppm); B(4), B(6), B(8), B(11) (31.7 ppm); B(9), B(10) (29.1 ppm); and B(5), B(12) (25.1 ppm). For the last two peaks, this conjecture reverses the previous guess,⁵ based upon a comparison with $o-B_{10}H_{10}C_2H_2$, and produces more scatter in the graph¹⁸ of chemical shift vs. a function of overlap population. Nevertheless, the slope of the graph and the basic conclusions are substantially unchanged. Clearly, a systematic study of other B-substituted derivatives of $m-B_{10}H_{10}C_2H_2$ is desirable before any assignment of the ¹¹B nmr spectrum is to be considered as definite.

Acknowledgment.—We wish to thank the Office of Naval Research and the Advanced Research Projects Agency for support of this work. We are also indebted to H. Schroeder for the sample.

(18) F. P. Boer, R. A. Hegstrom, M. D. Newton, J. A. Potenza, and W. N. Lipscomb, J. Am. Chem. Soc., 88, 5340 (1966).